Neuronal functionality assessed by magnetoencephalography is related to oxidative stress system in acute ischemic stroke
نویسندگان
چکیده
The hypoxic brain damage induced by stroke is followed by an ischemia-reperfusion injury modulated by oxidative stress. Magnetoencephalographic (MEG) recording of rest and evoked cortical activities is a sensitive method to analyse functional changes following the acute ischemic damage. We aimed at investigating whether MEG signals are related to oxidative stress compounds in acute stroke. Eighteen stroke patients and 20 controls were enrolled. All subjects underwent MEG assessment to record background activity and somatosensory evoked responses (M20 and M30) of rolandic regions, neurological examination assessed by National Institute of Health Stroke Scale (NIHSS) and plasmatic measurement of copper, iron, zinc, ceruloplasmin, transferrin, total peroxides and Total Anti-Oxidant Status. Magnetic Resonance was performed to estimate the lesion site and volume. Delta power and M20 equivalent current dipole (ECD) strength in the affected hemisphere (AH) correlated with NIHSS scores (respectively, rho=.692, p=.006 and rho=-.627, p=.012) and taken together explained 67% of NIHSS variability (p=.004). Higher transferrin and lower peroxides levels correlated with better clinical status (respectively, rho=-.600, p=.014 and rho=.599, p=.011). Transferrin also correlated with AH M20 ECD strength (rho=.638 p=.014) and inversely with AH delta power (rho=-.646 p=.023) and the lesion volume, especially in cortico-subcortical stroke (p=.037). Our findings strengthen MEG reliability in honing the evaluation of neuronal damage in acute ischemic stroke also demonstrating an association between the MEG parameters most representing the clinical status and the oxidative stress compounds. Our results meet at a possible protective role of transferrin in limiting the oxidative damage in acute stroke.
منابع مشابه
ارزیابی سطح سرمی اسید اوریک و ویتامین C در فاز حاد سکتهی مغزی آتروترومبوتیک
Background and Objective: Uric acid and vitamin C take part in protection mechanisms to overcome the oxidative stress that occurs in vascular accidents. Considering the prevalence of cerebrovascular accidents and unresolved position of these antioxidants, this study aimed to assess serum uric acid and vitamin C levels in acute ischemic stroke. Materials and Methods: A total of 50 patients durin...
متن کاملThe Evaluation and Comparison of Oxidative Stress in Hemorrhagic and Ischemic Stroke
Background: Among different mechanisms, oxidative stress has a possible role in neural injury in cerebrovascular events. Objectives: Assessment the oxidants-antioxidants imbalance in ischemic and hemorrhagic strokes. Materials and Methods: Serum level of malondialdehyde, the main marker of lipid peroxidation, and total antioxidant capacity were measured in a group of 48 stroke patients consis...
متن کاملThe Relation of Urinary 8-OHdG, A Marker of Oxidative Stress to DNA, and Clinical Outcomes for Ischemic Stroke
BACKGROUND Oxidative stress/free radical generation after ischemic stroke contributes to neuronal cell injury. We evaluated the utility of an oxidative stress marker, urinary 8-hydroxy-2-deoxyguanosine (8-OHdG), to demonstrate an association between the changes of 8-OHdG and outcomes after acute ischemic stroke. METHODS We enrolled 44 patients (26 males and 18 females) who visited our hospita...
متن کاملO10: Thrombo-Inflammation in Acute Ischemic Stroke
Ischemic stroke has been classified as a merely thrombotic disease, so the main goal of its treatment is the recanalization of the occluded vasculature. However, despite fast restoration of blood circulation, progressive stroke still develops in many patients, which has led to the concept of reperfusion injury. The underlying mechanism is only partly known. Though, it is accepted now, tha...
متن کاملEvaluation of UCP2 expression in the phenomenon of ischemic resistance induced by alternating normobaric hyperoxia in a rat model of stroke
Introduction: ischemic preconditioning is one of the most important mechanisms, responsible for the increased brain resistance after stroke. One of the most important candidates to ischemia preconditioning is intermittent normobaric hyperoxia. In this study, the effect of intermittent normobaric hyperoxia on the expression of UCP2 was investigated in a stroke model. Methods: Rats were divid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 44 4 شماره
صفحات -
تاریخ انتشار 2009